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Abstract 

INTRODUCTION: Although only 10% of strokes are due to involvement of the posterior circulation, they can 

be associated with a very poor prognosis. Therefore, accurately predicting stroke outcome from a set of 

variables may identify high-risk patients and guide treatment approaches, leading to decreased morbidity. 

In this study, our aim was to design and compare different machine learning methods, capable of 

predicting the outcome of endovascular intervention in acute posterior circulation ischaemic stroke. 

METHODS: We conducted a retrospective analysis of a prospectively collected database of acute posterior 

circulation ischaemic stroke treated by endovascular intervention. Using SPSS®, MATLAB® and 

Rapidminer®, classical statistics as well as artificial neural network and support vector algorithms were 

applied to design a supervised machine capable of classifying these predictors into potential good and 

poor outcomes, as defined by 30 day mRS. RESULTS: We included 50 consecutive acute posterior 

circulation ischaemic stroke patients treated by endovascular technique. All the available demographic, 

procedural and clinical factors were included in the machine. The final confusion matrix of the neural 

network, demonstrated an overall congruency of ~90% between the target and output classes, with a 

relatively favourable overall receiving operative characteristic. However, after optimisation, the support 

vector machine had a relatively better performance, with a root mean squared error of 2.432 (SD: 

±0.584). CONCLUSION: Consistent with the findings for anterior circulation, we showed promising accuracy 

of outcome prediction in posterior circulation strokes, suggesting that a robust machine learning system 

can potentially help in prognostication of acute posterior circulation stroke.Keywords: stroke, 

cerebrovascular occlusion, brain infarction - posterior circulation, brain infarction – anterior circulation, 

predictors. 

Introduction 

Stroke and Endovascular Treatment 

Stroke is a major global public health issue and is considered the third most costly health condition in 

developed countries [1]. Approximately 800,000 cases of stroke are reported in the USA per annum, 

leading to 200,000 deaths, and accounts for almost 1 of every 16 deaths [2,3]. For those who survive, it is 

the most common cause of adult disability in the modern world [2,4] requiring expensive long term 

rehabilitation care [2,5-7] amounting to costs estimated at over 60 billion dollars per year in the USA 

alone [2,5,8]. More than 80% of stroke cases are ischaemic, with the remainder being haemorrhagic [2]. 
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Urgent reperfusion of the ischaemic brain is the primary treatment aim, either by intravenous 

thrombolysis or by endovascular interventional techniques [9]. These treatments focus on vascular 

recanalisation and restoration of blood flow to the ischaemic tissue [10]. Although there are varying 

estimates of the number of patients who potentially benefit from endovascular intervention, there is 

likely to be an increased number of patients treated using these techniques [2,11,12]. 

Initial treatments focussed on intra-arterial thrombolysis, proposed to be safe up to 6 hours post onset 

[1,13]; however, rapid mechanical clot extraction with decreased time to cerebral reperfusion has obvious 

appeal and is theoretically ideal for platelet poor, fibrin rich, well organised cardiogenic emboli, 

refractory to mechanical lysis [2]. Therefore, subsequent development of various mechanical 

thrombectomy devices has gained much interest with the likely advantage of faster recanalisation and 

potential lower rate of haemorrhagic transformation; possibly leading to an extended time window for 

stroke intervention [1]. 

However, despite recanalisation success rates of more than 80%, randomised controlled trials such as 

Interventional Management of Stroke (IMS) – III [1,14] have still failed to show a significant improvement in 

the clinical outcome, evaluated by 90 days modified Rankin Scale (mRS) score [2,10,15-21]. The 

SYNTHESIS trial also failed to show any superiority of endovascular intervention or even combined 

endovascular and intravenous thrombolysis over traditional intravenous tPA [22-24]. This conundrum was 

further complicated when the MR-RESCUE trial demonstrated not only that embolectomy was no better 

than standard care, but also that a favourable penumbral pattern on imaging does not necessarily indicate 

patients who would benefit from endovascular therapy [25]. 

This discrepancy between the IMS-III, SYNTHESIS and MR-RESCUE outcomes and what may have been 

intuitively expected, is likely related to the multiple potential pitfalls in the design of these trials, which 

could influence the interpretation of the results [1,26,27]. The most commonly hypothesised factor is that 

patient selection was neither targeted to those who failed IV thrombolysis, nor to those with large vessel 

occlusion or large clot burden ≥ 8mm, who are usually not responsive to chemical treatment alone, since 

vascular imaging was not required prior to inclusion into the studies [1,26-28]. These limitations could 

certainly influence the accuracy of the studies in evaluation of the clot retrieval techniques. On the other 

hand, stent-retrievers, now acknowledged as more effective devices, were included only very late into 

the studies such as IMS-III, with fewer than 1% of cases treated using Solitaire. Since the release of these 

preliminary results, at least 6 additional devices have started premarket testing [1,26-28]. 

To complicate matters further, it appears that the situation is different for posterior circulation 

involvement. Although these cause only 6-10% of large vessel strokes, posterior circulation occlusions have 

a relatively different course and failure of recanalisation, in particular in comatose patients or those with 

basilar trunk involvement, and results in a very poor prognosis [2,29]. 

Surprisingly, the BASICS (Basilar Artery International Cooperation Study) did not show a definite 

superiority for intra-arterial intervention over intravenous thrombolysis [2,30], and the overall outcome is 

quite variable in patients who are treated with intra-arterial or intravenous thrombolysis, in particular 

depending on the therapeutic delay [2,31]. On the other hand, some trials have already demonstrated 

recanalisation success rates of more than 50% for intra-arterial techniques, with relatively good outcome 

[2,32]. However, randomised control trials are restricted and limited by the lower incidence of posterior 
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circulation strokes, and the results are potentially influenced by the heterogeneity of both the 

presentations and the causes; at this stage, the rationale for aggressive treatment is mainly based on 

anecdotal evidence [2,15,33,34]. 

Overall, the major obstacle in endovascular intervention of the posterior circulation ischaemic stroke is to 

establish a set of criteria identifying those patients who may benefit from intervention, whilst avoiding 

potential unwanted catastrophic treatment related complications. 

There is currently level I evidence that NIHSS (National Institute of Health Stroke Score) [35,36] is a quick 

and relatively simple guide to estimate the extent and severity of a stroke, and probably correlates with 

the clinical outcome [35]. It is, however, unable to measure the size of established infarction separate 

from the salvageable parenchyma; therefore, it is unable to predict potential outcome after endovascular 

intervention accurately. This is consistent with the well known fact that multiple factors contribute to and 

influence recanalisation success, including the extent and site of the vascular occlusion; the overall 

outcome also depends on patient demographic factors as well as clinical setting such as the time from 

onset, duration and the severity of the presenting neurological insult [10]. 

The complexity of the all of these factors involved makes prediction of the final outcome difficult. On the 

other hand, accurately predicting the outcome from a set of predictive variables is an important aspect of 

clinical work, which can assist in identifying high-risk patients and guide treatment approaches, thus 

potentially decreasing morbidity and mortality. Such a model in prediction of the outcome not only may 

be crucial in prognosis, but can also have future roles in patient selection for the variety of the treatment 

options available and the relevant studies. 

Prognostic Modeling and Machine Learning 

The usual approach to analyse stroke outcomes data is to develop logistic regression models; however, 

machine learning algorithms have been proposed as an alternative in particular for large-scale multi-

institutional data, with the advantage of easily incorporating newly available data to improve prediction 

performance [37,38]. 

Machine Learning algorithms can be applied and trained under two different scenarios: supervised and 

unsupervised. In supervised scenarios, the predicted outputs are known and used to train the models. In 

unsupervised machines, the desired output is unknown and the objective is to discover structure in the 

data, not to generalise a mapping from inputs to outputs. 

Two of the most commonly used machine learning methods include artificial neural network and support 

vector machine. These models are trained supervised, with neural network algorithms capable of 

unsupervised training as well. 

Although the technical details of these algorithms are beyond the scope of this article, a summary of them 

follows: 

Artificial neural network is a mathematical and computational model that is inspired by the structure and 

functional aspects of biological neural systems [38,39]. It consists of interconnected nodes, processing 

information using a connectionist computational approach. The central connectionist principle proposes 
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that complex neurological and mental phenomena can be described by an interconnected network of 

simple uniform units [39], adaptively changing their structure based on external or internal information, 

which flows during the learning phase, forming a robust dynamic system modelling the complex 

relationships between inputs and outputs or patterns in data [38-40]. 

From the different topological types of neural networks, the commonly used feed-forward is a network 

where connections between the units do not form a directed cycle or loop, and the information moves in 

only one direction—forward—from the input nodes through the hidden nodes to the output nodes [39]. 

Back propagation algorithm is a supervised learning method divided into propagation and weight update 

phases, which are repeated until the performance of the network is good enough, while the output values 

are compared with the correct answer to compute the value of some predefined error-function [38,39]. 

This calculated error is then fed back through the network, adjusting the weights of each connection 

accordingly in order to reduce the error function [39]. Repeating this process usually eventually converges 

to some state where the error of the calculations is minimised, at which point the network is considered 

trained for a certain target function [38]. 

In comparison to the artificial neural network, the support vector machine works very differently. It takes 

a set of input data and predicts which of the different possible classes comprises the input, making it a 

non-probabilistic linear classifier. A set of training data is given and marked as belonging to one of the 

categories. An SVM training algorithm builds a model that assigns new data into one category or the other. 

The example data points are initially mapped as points in space so that the examples of the separate 

categories are divided by a clear gap that is as wide as possible and then unknown data is represented in 

that same space and predicted to belong to a category based on which side of the gap they fall [38-40]. In 

doing so, the algorithm constructs a hyperplane or a set of hyperplanes in an infinite-dimensional space, 

which can be used for classification, regression or other tasks. Intuitively, a good separation is achieved 

by the hyperplane that has the largest distance to the nearest training data points of any class [38-40]. 

This gap is called functional margin and in general the larger the margin the lower the generalisation error 

of the classifier [38-40]. 

Whereas the original problem may be stated in a finite dimensional space, it often happens that the sets 

to discriminate are not linearly separable in that space. For this reason, it was proposed that the original 

finite-dimensional space be mapped into a much higher-dimensional space, presumably making the 

separation easier in that space [38-40]. To keep the computational load reasonable, the mapping is 

designed to ensure that dot products may be computed easily in terms of the variables in the original 

space, by defining them in terms of a kernel function K (x, y) selected to suit the problem. The 

hyperplanes in the higher dimensional space are defined as the set of points whose inner product with a 

vector in that space is constant [38-40]. 

Our Study 

Following the promising results from modelling of the anterior circulation stroke [41] and using the same 

techniques, we aimed to design a prognostic model for the endovascular intervention in acute posterior 

circulation ischaemic stroke using machine learning algorithms. We decided to focus on the posterior 

circulation strokes separately and model them independently to avoid potential inadvertent underlying 

inhomogeneities. 
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We compared and assessed these 2advanced methods in terms of their capability for predicting outcome. 

Method 

This is a retrospective study on a prospectively collected completely de-identified clinical database, which 

received approval from the Ethics Committee at our institution; our Review Board waived the need for 

consent (HREC: QA2011100).The technical details are provided below to facilitate reproducibility for other 

datasets if available. 

Demographics and clinical details of 50 patients who presented with acute posterior circulation stroke to 

our institution and underwent endovascular treatment over a period of approximately 5 years were 

extracted from a prospectively maintained stroke database. 

Patients were screened for relevant comorbidities at the time of presentation including: diabetes 

mellitus, hypertension, hypercholesterolaemia, atrial fibrillation, history of ischaemic heart disease and 

previous cerebral stroke or transient ischaemic attack. Neurological examination was performed for all of 

patients prior to any intervention and baseline National Institute of Health Stroke Scores were recorded in 

the database. 

From the initial diagnostic angiogram occluded vessels were identified. In the case of multiple sequential 

occlusions, the proximal vessel was used as a data point and, depending on the extent and segments 

involved, the artery was categorised as first and second occlusion. 

Some of the patients also had IV-tPA prior to endovascular intervention. Different endovascular 

recanalisation devices were used, including the Solitaire stent-retriever and MERCI device. 

In addition to mechanical thrombectomy, some cases also received intra-arterial chemical thrombolytic 

agents and, if present, associated or post-recanalisation hemodynamically significant stenoses were also 

treated with angioplasty or stent insertion. 

After treatment of the occluded artery(s), recanalisation success was assessed using Thrombolysis in 

Cerebral Infarction (TICI) Score by the blinded consensus of the treating neurointerventionalists. TICI 

score in conjunction with the number of attempts for recanalisation, procedure duration, and time of 

onset to recanalisation, as well as patient general anesthesia status, were all recorded. 

All procedural or delayed post-procedural complications were also recorded, including arterial perforation 

and puncture site haematoma or pseudoaneurysm. 

Post-procedure CT scans of the brain at 24-36h were all assessed by neuroradiologist and 

neurointerventionists for the presence of acute stroke and intracranial haemorrhage. Intracranial 

haemorrhagic transformations were divided into clinically silent or symptomatic and then classified into 

different categories. 

Procedural outcome was assessed using mRS, measured 90 days after onset. A final dichotomised good and 

bad outcome was also recorded for the patients as per mRS, with less than or equal 2considered as good. 
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First, using SPSS® (IBM Corporation), a Standard Linear Model was designed, using forward-stepwise as the 

model selection method and Information Criterion (AICC) as the criteria for entry. Potential predictors of 

the mRS as the outcome measure were identified and a prediction model was formed and compared with 

the observed outcome for validation. 

Supervised machine learning was then attempted. Initially using MATLAB® (MathWorks Inc.) and its Neural 

Network Toolbox, a two-layer Feed-Forward network with sigmoid hidden and linear output neurons was 

designed. The data was then randomly divided into 70, 15 and 15 percent subsets and the network was 

trained using Levenberg-Marquardt algorithm, validated and tested using the mRS as outcome, with the 

performance of the model monitored using Mean Squared Error. Prediction errors were also depicted on a 

histogram. In addition, for comparison, the network was also trained using the dichotomised mRS,>2 or 

≤2, to evaluate a binary classifier for potential good and poor outcomes. 

For the seven scale mRS network, linear regressions were also performed between the observed and 

estimated outcome over the training, validation and test datasets independently using Theil–Sen 

estimator. However, with the dichotomised model being a binary classifier, Receiver Operating 

Characteristic(ROC) curves were calculated to illustrate the performance of the system over each dataset 

as its discrimination threshold is varied. Additionally, confusion matrices or contingency tables were also 

calculated, allowing better representation of the performance of the network. 

The designed network and its calculated weighting matrix was then saved to be imported into the Simulink 

Toolbox of MATLAB® (MathWorks Inc.) for outcome prediction of the future data. Subsequently, to assess 

the capabilities of other supervised machine learning systems, the dataset with scaled and dichotomised 

mRS were imported into the data-mining program, Rapidminer® (Rapid-I Inc.). The filtered data was then 

given to the input training port of a nested cross-validation operand, with the relative number of 

validation of 10% and a shuffled sampling type as well as "Leave One Out". The cross-validation operand 

consisted of two components: training and testing. The testing component contained a Support Vector 

Machine, with ANOVA Kernel, which is defined by raised to power "d" of summation of "exp(-g (x-y))" 

where "g" is gamma and "d" is the degree: "g" and "d" were set to be 1 and 2 in our machine. The size of 

the cache for kernel evaluations was set to be 200 megabytes. The complexity constant ("C"), which sets 

the tolerance for misclassification, was set to 0. The convergence epsilon, which is an optimiser 

parameter specifying the iterations stop point, was set to 0.001, with maximum iteration set to 100,000. 

In our machine, the loss function positive and negative complexity constant was set to 1.0. The 

insensitivity constant, epsilon as well as the epsilon for positive and negative deviations, were all set to 0. 

The model calculated in this machine was passed onto the testing component of the parent x-validation 

operand and then applied on to the test dataset. The performance of the machine was monitored by a 

classic performance monitor operand and was reported as the mean squared error as well as its root. In 

addition, accuracy of the machine was assessed by aggregation of a hidden confusion matrix constructed 

by evaluating different models on different test sets. The designed model was finally incorporated into an 

apply operand ready for the prediction of the outcome of the future patients. 
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Results 

The median of patients' baseline NIHSS was 12, with average of 20.6 (SD: ± 15.5).Only 7 of our patients 

also had IV-tPA prior to endovascular intervention. The remainder of the patients did not receive tPA due 

to a variety of contraindications, mainly time of onset to treatment delay. As expected for posterior 

circulation, the majority of the procedures (88%) were performed under general anaesthesia. 

The Solitaire stent-retriever was used in the majority (19) of the mechanically thrombectomised cases, 

and the MERCI device was used in 4 cases. In some cases instrumentation was repeated up to 5 times to 

improve recanalisation. More than half of the patients (31 cases) received urokinase and 16 patients had 

intra-arterial tissue plasmin activator infusion as adjunct intra-arterial chemical thrombolytic agents. 

Overall, recanalisation was relatively successful with TICI 2b or 3 demonstrated on the final angiographic 

run in approximately 50% of cases. Significant associated and post-recanalisation arterial stenosis was also 

noted in some cases, with 15 patients requiring angioplasty, and 12 patients eventually stented. The 

average duration of procedures was97.2min (SD: ± 43), and time of onset to recanalisation was on average 

660min (SD: ± 374). 

Immediate procedural complications were uncommon, with only 1 case of arterial perforation and no 

puncture site haematoma or pseudoaneurysms noted. Sixteen patients (32%) were diagnosed with 

intracranial haemorrhage on the delayed post-procedural CT, with a spectrum of locations and severities, 

from subarachnoid haemorrhage to asymptomatic or large intra-parenchymal bleeds. 

The average of mRSat90 days was 3.9 (SD: ± 2.4), with median of 5 and mode of 6. 

Standard Modelling 

The information criterion and accuracy of the proposed linear model were calculated as 53.4 and 55.1% 

respectively. The most influential predictor was baseline NIHSS, with relative predictive value of ~0.8. 

Artificial Neural Network 

The best validation performance was 6.3 and 0.03, at epoch 2 and 27 for seven scale and dichotomised 

mRS models respectively. 

Gradient of 5.228 x 10-11 and 2.333 x 10-4 were calculated at epoch 6 and 33for seven scale and 

dichotomised mRS models respectively. Error histograms were calculated as the difference between the 

target and output which are equivalent of observed and estimated outcome, from the training, test and 

validation datasets, for seven scale and dichotomised mRS models. 

Using Theil–Sen estimator, the root of the Coefficient of Determination was calculated as 0.96, 0.26 and 

0.18 for each subset respectively. However, overall network estimated and observed outcome for the 

whole dataset demonstrate a relatively good linear correlation with an R of approximately 0.72 in a linear 

regression. 

There was favourable overall ROC curve; however, the test curve is very poor, with the estimated area 

under curve (AUC) of 0.35. The contingency table, with each column representing the instances of the 
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predicted outcome and each row demonstrating the observed outcome, confirmed acceptable model 

sensitivity and specificity. 

Support Vector Machine 

For the scaled mRS outcome, our support vector machine had a good performance with a mean squared 

error of 6.257 (SD: ± 3) and the estimated root at 2.432 (SD: ± 0.584). Also, the system accuracy was 

assessed by "mikro", calculated as 2.5. On the other hand, system's MSE and "mikro" were calculated as 

0.222 (SD: ± 0.096), and 0.471, respectively, in prediction of the dichotomised outcome, with the 

precision of 68% predicting poor outcomes and an overall precision of approximately 70% with a model 

accuracy of66% and an AUC of 0.5. 

Best performance of the scaled mRS model was in prediction of the patients with poor prognosis with mRS 

of 6, with a class precision up to48%; however, for the remainder, prediction was quite imprecise in the 

scaled compared to dichotomised model. Estimated machine performance improved even further when 

the cross validation operand set to work with "Leave Out One" sampling rather than "Shuffled", with a MSE 

of6.112 (SD: ± 7.307) and rMSE of 1.984 (SD: ± 1.475) for the scaled mRS outcome and0.263 (SD: ± 0.317) 

and rMSE of 0.408 (SD: ± 0.310)for the dichotomised model. The "mikro" indicator of accuracy, was 

calculated as 2.472 and 0.512, with the "Leave Out One" sampling for the scaled mRS and dichotomised 

outcome predictor machines, respectively. 

Conclusions 

We showed that despite a small dataset, a modest prediction accuracy of 70% was attainable, and there is 

the likely potential of further improving prediction by incorporating larger multicentre datasets. 

There has been recent interest in adopting machine learning techniques in the prediction of the outcome 

of stroke patients. A recent study submitted for publication has shown promising results in modelling the 

outcome in patients with anterior circulation ischaemic stroke and with relatively good accuracy and 

precision in prediction of the final mRS using artificial neural network modelling and support vector 

machine algorithms. One study has proposed spatial regularisation of the diffusion-weighted images 

acquired at the acute stage using support vector machine with a Graph encoding the voxels' proximity, 

and found significant accuracy in prediction of the motor outcome at 90 days, showing that poor motor 

outcome is associated with the changes in the corticospinal bundle and white matter tracts originating 

from the premotor cortex [42]. 

Another study has proposed use of machine learning in individualised stroke treatment decision making by 

accurate identification of the extent of salvageable tissue on MRI in rats based on measurement of a 

perfusion-diffusion mismatch and calculation of infarction probability. This study compared generalised 

linear model (GLM), generalised additive model, support vector machine, adaptive boosting and random 

forest, proposing that assessment of the heterogeneity of infarction probability with imaging based 

algorithms enables estimation of the extent of potentially salvageable tissue after acute ischaemic stroke 

[43]. 

Conversely, congruent with anterior circulation ischaemic stroke, attempts to prove the effectiveness of 

the invasive posterior circulation stroke treatments have shown inconsistent results. However, more than 
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ever before, endovascular treatments of acute posterior circulation ischaemic stroke are evolving to 

mainstream management in particular given the mortality particularly for those patients with no other 

available therapeutic options, e.g. contraindication for IV thrombolysis and large vessel occlusions [10,44-

48]. 

To our knowledge there is no comprehensive multifactorial study in humans attempting to apply machine 

learning algorithms in acute posterior circulation ischaemic stroke outcome prediction after invasive 

endovascular management. Undoubtedly, numerous factors including extensive clinical heterogeneity, can 

influence the final stroke outcome with varying significance and mechanisms, making conventional 

modelling challenging and potentially inaccurate. However, machine learning models, which are relatively 

independent of the unknown potential underlying interactions between these factors, are probably able to 

simulate the eventual result of such a complex system. Such models may be of use not only for prognosis 

and in predicting outcomes under different circumstances, but hopefully in the near future to assist in 

clinical decision-making, in particular identifying those patients who may benefit from a variety of 

possible treatment options, including more aggressive management such as endovascular interventions. 

Limitations 

Parallel to the all abovementioned advantages of the machine learning algorithms, there are important 

underlying assumptions and limitations that should be noted. Although these models can be accurate and 

perhaps useful in answering the primary question, these complex algorithms require large training 

datasets to improve their performance, with the true underlying relationships between influential factors 

remaining undiscovered to the user [37,38,40]. 

This inherent need for large training datasets may affect the accuracy of the machines in studies like the 

current study when only representative training data is used. In addition, with no clear understanding of 

the true predictors, an overcorrected conservative design may lead to the models being over-fitted by 

irrelevant demographics or clinical factors, thus increasing the random error and covering the desired 

signal with noise, a phenomenon which may explain the poor ROC curve for the test group in this study. To 

avoid this, techniques like cross-validation, regularisation, pruning or Bayesian model comparison can be 

used to indicate the tipping point when further training no longer results in a better performance or 

alternatively decision tree learning methods can be employed, providing more interpretable models 

[37,38,40]. 

Future work 

Putting the underlying methodological and computational complexities aside, our long term goal is to 

design an easy to use online system which facilitates relative prediction of the clinical outcome based on 

demographics and clinical findings, which can be used as a guide to therapeutic decision making. 

Such a system has the potential for fine adjustment from the continuous training provided via handling 

large-scale national or international multi-institutional users, with the advantage of easily incorporating 

newly available data to improve prediction performance. 
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Figures 

 
Figure 1 - 90 days mRS histogram 

 

 

Figure 2 - Relative importance of predictors 

 

 

Figure 3 - Comparison between predicted and observed outcome 
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Figure 4 - Network performance, for seven scale (left) and dichotomised mRS models (right) 
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Figure 5 - Error Histogram, for seven scale (left) and dichotomised mRS models (right) 

 

 

Figure 6 - Linear fit between the estimated and observed outcome 
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Figure 7 - Over all ROC curve and confusion matrix for the dichotomised outcome network, on the left and right 

respectively 

 

 

Figure 8 - Work is in progress to design a system capable of proposing a dichotomised outcome for each patient with 

and without endovascular intervention 
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Tables 

 

Table 1 - Demographics and gender ratio: Age and gender distribution of the patients: 

Age Gender 
Mean 65 
Median 67.5 
Mode 70 
Std. Deviation 14.85 
Minimum 28 
Maximum 88  
 

 

Table 2 - Distribution of the occluded vessels 

Occlusion Artery 
1st 2nd 

Vertebral 7 0 
Basilar 42 1 
 

 

Table 3 - ICH classification 
 
Classification of Infarction Haemorrhagic Transformation 
Type Name Definition 

HI-1 Haemorrhagic infarction type 1 Small petechiae along the margins of the 
infarct 

HI-2 Haemorrhagic infarction type 2 More confluent petechiae within the infarcted 
area but without space-occupying effect 

PH-1 Parenchymal haemorrhage type 1 Haematoma in ≤30% of the infarcted area with 
some slight space-occupying effect Asymptomatic 

PH-2 Parenchymal haemorrhage type 2 
Dense haematoma in >30% of the infarcted 
area with substantial space-occupying effect 
or as any haemorrhagic lesion outside the 
infarcted area. 

Symptomatic Symptomatic intracranial haemorrhage parenchymal haemorrhage type 2 (PH-2) with 
neurological deficit 

IVH Interventricular Haemorrhage Others 
SAH Subarachnoid Haemorrhage 

 

 

Table 4 - Haemorrhagic Transformation 

 
Type No. 

HI-1 2 
HI-2 4 
PH-1 0 Asymptomatic 

PH-2 4 
Symptomatic 4 

IVH 1 Others 
SAH 1 
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Table 5 - 90 days mRS 

 
Modified Rankin Score (mRS) 
Mean 3.9 
Median 5 
Mode 6 
Std. Deviation 2.4 
Minimum 0 
Maximum 6 
 

 

Table 6 - Model precision of support vector machine in prediction of the dichotomised intervention outcome 

 
Outcome True Good True Bad Class Precision 
Predicted Good 14 8 63.64% 
Predicted Bad 9 19 67.86% 
Class Recall 60.87% 70.37%  
 

 

  


